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Abstract

The effect of time-periodic boundary temperatures on the onset of double diffusive convection in a fluid-saturated

anisotropic porous medium is studied by making a linear stability analysis. A perturbation method based on small

amplitude of the imposed temperature modulation is used to compute the critical values of thermal Rayleigh number

and wave number. The correction thermal Rayleigh number is calculated as a function of frequency of modulation,

viscosity ratio, anisotropy parameter, porous parameter, Prandtl number, diffusivity ratio and solute Rayleigh number.

The effect of various physical parameters is found to be significant at moderate values of the frequency. We found that it

is possible to advance or delay the onset of double diffusive convection by proper tuning of the frequency of modulation

of the wall temperature. The effect of various parameters on the stability of the system is brought out.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of double diffusive convection in porous

media has attracted considerable interest in recent time

because of its wide range of applications, from the

solidification of binary mixtures to the migration of

solutes in water-saturated soils. Other examples include

geophysical systems, electro chemistry, the migration of

moisture through air contained in fibrous insulation.

Early studies on the phenomena of double diffusive

convection in porous media are mainly concerned with

problem of convective instability in a horizontal layer

heated and salted from below. The onset of double dif-

fusive convection in a horizontal porous layer has been

investigated by Rudraiah et al. [1] using non-linear

perturbation theory. The linear stability analysis of the
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thermohaline convection is carried out by Poulikakos [2]

using the Darcy–Brinkman model. The double diffusive

convection in a porous media in the presence of cross-

diffusion effects is analysed by Rudraiah and Malashetty

[3].

One of the effective mechanism to control convection

is by maintaining a non-uniform temperature gradient

across the boundaries. The non-uniform temperature

gradient may be generated by (i) appropriate heating or

cooling at the boundaries (ii) through flow (iii) appro-

priate distribution of heat sources and (iv) radiative heat

transfer (see e.g. [4]). These are concerned only with

space dependent temperature gradient. However, in

many practical problems the non-uniform temperature

gradient is a function of both space and time. This is to

be determined by solving energy equation with suitable

time dependent temperature boundary conditions.

There are many studies available in the literature

concerning how a time-periodic boundary temperature

affects the onset of Rayleigh–Benard convection. Most

of the findings related to these problems have reviewed
ed.
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Nomenclature

d height of the porous layer

F porous parameter, kz=d2

g gravitational acceleration

k unit vector in the vertical direction

Km effective thermal conductivity of porous

media

kx, kz permeability components in horizontal and

vertical directions

l, m wave numbers in x-, y-directions
p pressure

Pr Prandtl number, m=jT

q mean filter velocity, ðu; v;wÞ
Q modified velocity vector, which includes

permeabilities, ðu=kx; v=kx;w=kzÞ
R thermal Rayleigh number, b1gDTdkz=mjT

Rs solute Rayleigh number, b2gDSdkz=mjT

S solute concentration

DS salinity difference between the walls

T temperature

DT temperature difference between the walls

t time

x, y, z space co-ordinates

Greek symbols

a horizontal wave number

ac critical wave number

b1 thermal expansion co-efficient

b2 solute expansion co-efficient

c heat capacity ratio, ðqcpÞm=ðqcpÞf
d porosity

e amplitude of modulation

jS solute diffusivity

jT effective thermal diffusivity, Km=ðqcÞf
le effective viscosity

lf viscosity of the fluid

m kinematic viscosity, lf=qR

s diffusivity ratio, jS=jT

q density

/ phase angle

X frequency of the modulation

x non-dimensional frequency, Xd2=jT

n anisotropy parameter, kx=kz

Other symbols

r2
1

o2

ox2 þ o2

oy2

r2 r2
1 þ o2

oz2

Subscripts

b basic state

c critical

f fluid

R reference value

Superscripts

� dimensionless quantity

/ perturbed quantity
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by Davis [5]. In case of small amplitude temperature

modulations, a linear stability analysis was performed

by Venezian [6]. Rosenblat and Herbert [7], Rosenblat

and Tanaka [8] and Roppo et al. [9] have studied the

effect of thermal modulation on the onset of convection

in a horizontal fluid layer. On the other hand the studies

related to the effect of temperature modulation on the

onset of convection in a fluid saturated porous medium

have received marginal attention. The effect of time-

periodic wall temperature on the onset of convection in

a porous medium has been studied by Caltagirone [10],

Rudraiah and Malashetty [4] and Malashetty and Wadi

[11]. Recently, Malashetty and Basavaraja [12,13] have

studied the effect of time-periodic temperature modula-

tion on the onset of convection in a horizontal aniso-

tropic porous layer. All these investigations are

restricted to a single component fluid and porous layers.

To our knowledge the studies on the effect of tempera-

ture modulation on the double diffusive convection in a

horizontal anisotropic porous layer are not available in

the literature.

The main object of this work is to study the effect of

time-periodic boundary temperatures on the onset of
double diffusive convection in a horizontal anisotropic

porous layer. The amplitude and frequency of the

modulation are externally controlled parameters and

hence the onset of convection can be delayed or

advanced by the proper tuning of these parameters.

Therefore temperature modulation can be used as a

mechanism to delay convection to achieve higher effi-

ciencies in case of material processing applications and

advance it for achieving major enhancement of mass,

momentum and heat transfer.
2. Mathematical formulation

We consider a fluid-saturated anisotropic porous

medium confined between two infinite horizontal sur-

faces, a distance �d’ apart and a stabilizing uniform

concentration gradient and a vertical downward gravity

force acts on the fluid. A Cartesian co-ordinate is taken

with the origin in the lower boundary and the z-axis
vertically upwards. The surface temperatures are time-

periodic, externally imposed and are taken as
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TR þ DT
2

½1þ e cosXt� at z ¼ 0 ð1Þ

and

TR � DT
2

½1� e cosðXt þ /Þ� at z ¼ d: ð2Þ

A constant salinity gradient DS is maintained between

the two surfaces. Accordingly

SR þ DS
2

at z ¼ 0 ð3Þ

and

SR � DS
2

at z ¼ d: ð4Þ

The porous medium is assumed to posses horizontal

isotropy. With the assumptions and approximations

frequently made for the study of double diffusive con-

vection in a porous medium, the basic equations are

[14]

r � q ¼ 0; ð5Þ

1

d
oq

ot
þ 1

d2
ðq � rÞq ¼ � 1

qR

rp þ qf

qR

g� lf

qR

Qþ le

qR

r2q;

ð6Þ

ðqcpÞm
oT
ot

þ ðqcpÞfðq � rÞT ¼ Kmr2T ; ð7Þ

oS
ot

þ 1

d
ðq � rÞS ¼ jSr2S; ð8Þ

qf ¼ qR½1� b1ðT � TRÞ þ b2ðS � SRÞ�: ð9Þ
2.1. Basic state

Basic state of the fluid is quiescent and in the basic

state, the temperature Tb, solute concentration Sb, pres-
sure pb, density qb satisfy the following equations

c
oTb
ot

¼ jT

o2Tb
oz2

; ð10Þ

d2Sb
dz2

¼ 0; ð11Þ

� opb
oz

¼ qbg ð12Þ

and

qb ¼ qR½1� b1ðTb � TRÞ þ b2ðSb � SRÞ�; ð13Þ

where c ¼ ðqcpÞm=ðqcpÞf and jT ¼ Km=ðqcpÞf (effective

thermal diffusivity).

The solutions of Eqs. (10) and (11) subject to the

boundary conditions (1)–(4) are
Tb ¼ TR þ DT
2

1

��
� 2z

d

�
þ eRe ½aðkÞekz=d

�

þ að � kÞe�kz=d �e�iXt
��

; ð14Þ

Sb ¼ SR þ DS
2

1

�
� 2z

d

�
; ð15Þ

where

k ¼ ð1� iÞ cXd2

2jT

� �1=2
; aðkÞ ¼ e�i/ � e�k

ek � e�k

� �

and Re stands for the real part.
2.2. Linear stability analysis

Let the basic state be disturbed by an infinitesimal

thermal perturbation. We now have

q ¼ q0; p ¼ pb þ p0; T ¼ Tb þ T 0;

S ¼ Sb þ S0; qf ¼ qb þ q0: ð16Þ

The prime indicates that the quantities are infinitesimal

perturbations.

Substituting (16) into Eqs. (5)–(9) and using the basic

state solutions, we get the linearized equations governing

the infinitesimal perturbations in the form

1

d
oq0

ot
¼ � 1

qR

rp0 þ ðb1T
0 � b2S

0Þgk� mQ0 þ le

qR

r2q0;

ð17Þ

c
oT 0

ot
þ w0 oTb

oz0

� �
¼ jTr2T 0; ð18Þ

oS0

ot
þ 1

d
w0 dSb

dz0

� �
¼ jSr2S0; ð19Þ

q0 ¼ qRðb2S
0 � b1T

0Þ; ð20Þ

where k is the unit vector in the positive z-direction,
m ¼ ðlf=qRÞ (kinematic viscosity). The value of c and d is

set equal to one in further analysis for simplicity.

The boundary conditions for the perturbed velocity,

temperature and solute concentration are given by

w0 ¼ o2w0

oz2
¼ T 0 ¼ S 0 ¼ 0 at z ¼ 0; d: ð21Þ

The boundary conditions on velocity are stress-free

conditions.

We eliminate p0 from Eq. (17) and render the result-

ing equation and Eqs. (18) and (19) dimensionless by

using the non-dimensional variables
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ðx0; y0; z0Þ ¼ ðx�; y�; z�Þd; w0 ¼ md
kz

� �
w�;

t ¼ kz
m

� �
t�; T 0 ¼ ðDT ÞT �;

S0 ¼ ðDSÞS�; X ¼ jT

d2

� �
x; ð22Þ

to obtain linearized non-dimensional equations as (on

dropping asterisks for simplicity)

o

ot

��
þ 1

�
r2

1 þ
o

ot

�
þ 1

n

�
o2

oz2
� MFr4

�
w

¼ RFPr�1r2
1T � RsFPr�1r2

1S; ð23Þ

o

ot

�
� FPr�1r2

�
T ¼ �w

oTb
oz

; ð24Þ

o

ot

�
� sFPr�1r2

�
S ¼ w; ð25Þ

where

r2
1 �

o2

ox2
þ o2

oy2
; r2 � r2

1 þ
o2

oz2
:

The dimensionless parameters that appear in the

above equations are R ¼ b1gDTdkz
mjT

(thermal Rayleigh

number), Rs ¼ b2gDSdkz
mjT

(solute Rayleigh number), Pr ¼ m
jT

(Prandtl number), M ¼ le
lf
(viscosity ratio), F ¼ kz

d2 (por-

ous parameter), s ¼ jS
jT

(diffusivity ratio), and n ¼ kx
kz

(anisotropy parameter).

Combining Eqs. (23)–(25) we obtain an equation for

the vertical component of velocity w in the form

o

ot

���
þ 1

�
r2

1 þ
o

ot

�
þ 1

n

�
o2

oz2
� MFr4

�

� o

ot

�
� FPr�1r2

�
o

ot

�
� sFPr�1r2

��
w

¼ � RFPr�1 o

ot

��
� sFPr�1r2

�
oTb
oz

r2
1

þ RsFPr�1 o

ot

�
� FPr�1r2

�
r2

1

�
w: ð26Þ

In dimensionless form, the velocity boundary conditions

are

w ¼ o2w
oz2

¼ o4w
oz4

¼ � � � ¼ 0 at z ¼ 0; 1: ð27Þ

In Eq. (26), oTb
oz is given by

oTb
oz

¼ �1þ ef ; ð28Þ

where f ¼ Re AðkÞekz þ Að�kÞe�kzð Þe�ixt
� �

with k ¼
ð1� iÞ x

2

	 
1=2
and AðkÞ ¼ k

2
e�i/�e�k

ek�e�k

h i
.

3. Method of solution

We apply the perturbation technique to obtain the

eigenfunctions w and eigenvalues R of Eq. (26) for the

basic temperature distribution, which departs from

the linear profile ðoTb=oz ¼ �1Þ by quantities of order e.
Thus, the eigenvalues of present problem differ from

those of porous media analogue of two-component

Benard convection problem by quantities of order e.
Since the adopted technique is based on small ampli-

tudes, e has to be less than unity. We therefore assume

the solution of Eq. (26) in the form

w ¼ w0 þ ew1 þ e2w2 þ � � � ; ð29Þ

R ¼ R0 þ e2R2 þ � � � ; ð30Þ

where R0 is the critical Rayleigh number for the

unmodulated double diffusive convection in an aniso-

tropic porous medium.

Substituting Eqs. (29) and (30) into (26) and equating

coefficients of like powers of e, we obtain the following

system of equations

Lw0 ¼ 0; ð31Þ

Lw1 ¼ FPr�1ðLa3Þ
	
� R0fr2

1w0



; ð32Þ

Lw2 ¼ FPr�1ðLa3Þ R2r2
1w0

	
� R0fr2

1w1



; ð33Þ

where

L � ðLa1ÞðLa2ÞðLa3Þ � R0FPr�1ðLa3Þr2
1

þ RsFPr�1ðLa2Þr2
1

with

La1 �
o

ot

��
þ 1

�
r2

1 þ
o

ot

�
þ 1

n

�
o2

oz2
� MFr4

�
;

La2 �
o

ot

�
� FPr�1r2

�
; La3 �

o

ot

�
� sFPr�1r2

�

and each w0, w1, w2 is required to satisfy the boundary

conditions of Eq. (27).

In Eq. (30) the odd powers of e are missing because

changing the sign of e shifts the time origin only which

does not affect the problem of stability and thus R
should be independent of the sign of e, i.e. R1;R3; . . . ;
must be zero.

The eigenfunction w0 is a solution of the problem

with e ¼ 0, and solutions for this problem are wðnÞ
0 ¼

expfiðlxþ myÞg sinðnpzÞ; n ¼ 1; 2; 3; . . . ; where l, m are

the wave numbers in the xy-plane. The corresponding

eigenvalues R0 ¼ RðnÞ
0 are given by

RðnÞ
0 ¼ ða2 þ n2p2Þ

a2

� �
a2

�
þ p2

n
þ MF ða2 þ n2p2Þ2

�
þ Rs

s
:

ð34Þ
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For a fixed value of a the least eigenvalue occurs for

n ¼ 1. R0 assumes the minimum value for a ¼ ac where
ac satisfies the equation

2MF ða2cÞ
3 þ ð1þ 3MFp2Þða2cÞ

2 � ðMF p6 þ ðp4=nÞÞ ¼ 0:

ð35Þ

From Eq. (35), we note that the critical wave number ac
depends on anisotropy parameter n, the porous

parameter F and viscosity ratio M .

The equation for w1 then takes the form

Lw1 ¼ R0FPr�1a2ðLa3Þf sin pz: ð36Þ

Now let La3 � ð�ixþ sFPr�1a2 � sFPr�1D2Þ, where

D ¼ d=dz.
Thus

ðLa3Þf sinpz ¼ sFPr�1ða2
�

þ p2Þ þ ixðsFPr�1 � 1Þ
�

� f sin pz� 2sF kpPr�1f 0 cos pz ð37Þ

with

f 0 ¼ Re½ðAðkÞekz � Að�kÞe�kzÞe�ixt�:

Using Eq. (37), Eq. (36) becomes

Lw1 ¼ R0FPr�1a2Re L1f sinpz
�

� 2pksFPr�1f 0 cospz
�
;

ð38Þ

where L1 ¼ sFPr�1ða2 þ p2Þ þ ixðsFPr�1 � 1Þ.
We solve Eq. (38) for w1 by expanding the right hand

side of it in Fourier series expansion and inverting the

operator L. For this, we need the following Fourier

series expansions

gnmðkÞ ¼ 2

Z 1

0

ekz sin npz sinmpzdz

¼ � 4nmp2k½1þ ð�1Þnþmþ1
ek�

½k2 þ ðnþ mÞ2p2�½k2 þ ðn� mÞ2p2�
; ð39Þ

fnmðkÞ ¼ 2

Z 1

0

ekz cos npz cosmpzdz

¼ � 2k½k2 þ ðn2 þ m2Þp2�½1þ ð�1Þnþmþ1
ek�

½k2 þ ðnþ mÞ2p2�½k2 þ ðn� mÞ2p2�
; ð40Þ

so that

ekz sinmpz ¼
X1
n¼1

gnm sin npz; ð41Þ

ekz cosmpz ¼
X1
n¼1

fnm cos npz: ð42Þ

Let us now define

Lðx; nÞ ¼ x2B1

	
� B3



� ixB2; ð43Þ

where
B1 ¼ a2 þ n2p2

n
þ F ða2 þ n2p2Þ2ðM þ ð1þ sÞPr�1Þ;

B2 ¼ x2ða2 þ n2p2Þ � FPr�1ða2 þ n2p2Þ a2
�

þ n2p2

n

þ MF ða2 þ n2p2Þ2
�
ð1þ sÞ � sðFPr�1Þ2ða2 þ n2p2Þ3

þ FPr�1B4 � Rsa2;

B3 ¼ ðFPr�1Þ2ða2 þ n2p2Þ sða2
�

þ n2p2Þ a2
�

þ n2p2

n

þ MF ða2 þ n2p2Þ2
��

� sB4 þ Rsa2;

B4 ¼ ða2 þ p2Þ a2
�

þ p2

n
þ MF ða2 þ p2Þ2

�
þ Rs

s
a2:

It is easily seen that

Lðsin npze�ixtÞ ¼ Lðx; nÞ sin npze�ixt;

Lðcos npze�ixtÞ ¼ Lðx; nÞ cos nnpze�ixt

and Eq. (38) now reads

Lw1 ¼ R0FPr�1a2Re
X

L1½AðkÞgn1ðkÞ
n

þ Að � kÞgn1ð � kÞ� sin npze�ixt � 2pksFPr�1

�
X

½AðkÞfn1ðkÞ þ Að � kÞfn1ð � kÞ� cos npze�ixt
o
;

ð44Þ
so that

w1 ¼ R0FPr�1a2Re L1

X AnðkÞ
Lðx; nÞ sin npze

�ixt

�

� 2pksFPr�1
X BnðkÞ

Lðx; nÞ cos npze
�ixt

�
; ð45Þ

where AnðkÞ ¼ AðkÞgn1ðkÞ þ Að�kÞgn1ð�kÞ, BnðkÞ ¼ AðkÞ
fn1ðkÞ � Að�kÞfn1ð�kÞ.

To simplify Eq. (33) for w2, we need

ðLa3Þfw1 ¼ Lnfw1 � 2sFPr�1DfDw1; ð46Þ

where Ln ¼ sFPr�1ða2 þ n2p2Þ þ ixðsFPr�1 � 1Þ.
The equation for w2 then can be written as

Lw2 ¼ �R2sðFPr�1Þ2a2ða2 þ p2Þ sinpz
þ R0FPr

�1a2Re Lnfw1

�
� 2sFPr�1DfDw1

�
: ð47Þ

We shall not require the solution of this equation but

merely use it to determine R2.

The solubility condition requires that the time-inde-

pendent part of the right hand side of Eq. (47) must be

orthogonal to sin pz. Multiplying Eq. (47) by sinpz and
integrating between 0 and 1 we obtain

R2 ¼
2R0

sFPr�1ða2 þ p2Þ

� �
Re Ln

Z 1

0

fw1 sin pzdz
�

� 2sFPr�1

Z 1

0

DfDw1 sin pzdz
�
; ð48Þ

where an over bar denotes the time average.
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We have the Fourier series expansions

f sinpz ¼ Re
X

AnðkÞ sin npze�ixt;

Df sinpz ¼ Re
X

kCnðkÞ sin npze�ixt; ð49Þ

where CnðkÞ ¼ AðkÞgn1ðkÞ � Að�kÞgn1ð�kÞ.
We also note that the time average of product of two

complex functions A and B is given by

A � B ¼ 1

2p

Z 2p

0

ABdt ¼ 1

2
A�B ¼ 1

2
AB�; ð50Þ

where � denotes a complex conjugate.

Using Eqs. (49) and (50) in Eq. (48) we obtain

R2 ¼ ðLa4ÞRe
X1
n¼1

L1L�
njAnðkÞj2L�ðx; nÞ
jLðx; nÞj2

(

� 4p2jk2j2ðsFPr�1Þ2
X1
n¼1

nBnðkÞL�ðx; nÞC�
nðkÞ

jLðx; nÞj2

)
;

ð51Þ

where

La4 ¼
R2
0a

2

�1 2 2
:

2sFPr ða þ p Þ

0

50

-0.1       

R
2c

/R
0c

ω

     modulation    
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      Pr=1 , Rs=10 

 M=1
 M=2
 M=4
 M=5

  M=8

Symmetric temperature

ξ τ0.1, F=1.0 , =0.05

200

150            

100 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 1. Variation of R2c with x for different values of the vis-

cosity ratio M .
Eq. (47) can now be solved for w2, and the procedure

may be continued to obtain further corrections to w and

R.
We need the real part of ðL1L�

nL
�Þ which can be easily

calculated

Re L1L�
nL

�� �
¼ x2B1

	
� B3



B5 þ xB2B6; ð52Þ

jLðx; nÞj2 ¼ x2B1

	
� B3


2 þ x2B2
2; ð53Þ

jAnðkÞj2 ¼
16p4n2x2

fx2 þ ðnþ 1Þ4p4gfx2 þ ðn� 1Þ4p4g
; ð54Þ

where

B5 ¼ ðsFPr�1Þ2ða2 þ p2Þða2 þ n2p2Þ þ x2ðsFPr�1 � 1Þ2;
B6 ¼ xsFPr�1ðsFPr�1 � 1Þðða2 þ p2Þ � ða2 þ n2p2ÞÞ:

Similarly we can also find real part of

ðBnðkÞL�ðx; nÞCnðkÞÞ easily.
4. Minimum Rayleigh number for convection

The value of the thermal Rayleigh number R
obtained by this procedure is the eigenvalue corre-

sponding to the eigenfunction w which, though oscil-

lating remains bounded in time. Since R is a function of
0
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Fig. 2. Variation of R2c with x for different values of the

anisotropy parameter n.
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the horizontal wave number a and amplitude of per-

turbation e, we expand

Rða; eÞ ¼ R0ðaÞ þ e2R2ðaÞ þ � � � ; ð55Þ

a ¼ a0 þ e2a2 þ � � � : ð56Þ

The critical value of the Rayleigh number R is computed

up to Oðe2Þ by evaluating R0 and R2 at a ¼ a0. It is only
when one wishes to evaluate R4 that a2 must be taken

into account where a ¼ a2 minimizes R4. To evaluate

the critical value of R2 denoted by R2c we substitute

a ¼ a0 in R2, where a0 is the value at which R0 given by

Eq. (34) is minimum. We evaluate R2c for the following

cases,

(a) when the oscillating temperature field is symmetric

so that the wall temperatures are modulated in phase

(with / ¼ 0),

(b) when the wall temperature field is antisymmetric

corresponding to out-of-phase modulation (with

/ ¼ p),
(c) when only the temperature of the bottom wall is

modulated, the upper wall being held at a constant

temperature (with / ¼ �i1).
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In Eq. (51) the sum extends over even values of n for

case (a), odd values of n for case (b) and all integer

values for case (c). The infinite series (51) converges in

all cases.

The variation of R2c with x for different values of the

parameters are depicted in Figs. 1–12 and the results are

discussed in Section 5.
5. Results and discussion

The effect of time-periodic temperature modulation

on the onset of double diffusive convection in a hori-

zontal anisotropic porous layer is investigated using the

linear stability analysis proposed by Venezian [5].

Fig. 1 shows the variation of R2c with x, for different
values of the viscosity ratio M for the case of symmetric

modulation of the wall temperature. We observe from

this figure that, for small frequencies R2c is negative

indicating that the symmetric modulation has destabi-

lizing effect while for moderate and large values of fre-

quency its effect is stabilizing. The peak value of R2c

occurs around x ¼ 45 and it depends on the viscosity

ratio M . The effect of increasing viscosity ratio is to re-

duce the influence of modulation for small and moderate
frequencies while for large frequencies its effect is sta-

bilizing.

The effect of the anisotropy parameter n on the sta-

bility of the system for the case of symmetric modulation

is shown in Fig. 2. R2c is found to be positive over a wide

range of values of the frequency x. We find from this

figure that as the anisotropy parameter n increases, the

value of R2c decreases indicating that the effect of

increasing n is to reduce the effect of modulation. It is

also found that the effect of n is insignificant for low

frequencies. The peak value of R2c occurs around x ¼ 42

and its value depends on n.
The effect of porous parameter F on the stability of

the system in presence of symmetric modulation is

shown in Fig. 3. We observe that, as F increases the

value of R2c becomes small indicating that the large

value of F reduces the effect of modulation. The curves

for F ¼ 10 and 100 almost coincide with R2c ¼ 0 line.

This is due to the fact that Darcy resistance effect is

dominant over the modulation effect.

Fig. 4 depicts the variation of R2c with frequency x,
for different values of the diffusivity ratio s for the case

of symmetric modulation. It can be seen that an increase

in the value of diffusivity ratio decreases the value of R2c

indicating that, the effect of increasing s is to reduce the
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effect of thermal modulation. The peak value of R2c

occurs at x ¼ 47, and is independent of the diffusivity

ratio s.
Fig. 5 is the plot of R2c versus x for different values of

the solute Rayleigh number Rs with respect to symmetric

modulation of the wall temperature. We notice that the

value of R2c increases with an increase in the value of Rs,
indicating that the effect of increasing solute Rayleigh

number Rs is to delay the onset of convection. The peak

value of R2c occurs at x ¼ 42 and is also independent of

the solute Rayleigh number Rs.
The effect of viscosity ratio M on R2c for the case of

asymmetric modulation and only lower wall tempera-

ture is modulated is shown in Fig. 6. We observe that,

the effect is stabilizing over the whole range of the fre-

quencies. An increase in the value of M increases the

value of R2c, indicating that the effect of increasing the

viscosity ratio is to make the system more stable.

The effect of anisotropy parameter n on the onset of

convection in presence of asymmetric and only lower

wall temperature modulation is shown in Fig. 7. We find

that the effect of an increase in the value of n is to reduce

the effect of modulation. The effect of n is qualitatively

same in three types of modulation considered in this

paper.
The effect of porous parameter F on the stability of

the system in presence of asymmetric and only lower

wall temperature modulation is shown in Fig. 8. We find

that, an increase in the values of F decreases R2c. Further

we also find that as F increases beyond the value of one,

R2c become negative for some frequencies.

The effect of Prandtl number Pr on the onset of con-

vection in presence of symmetric, asymmetric and only

lower wall temperature modulation is shown in Figs. 9

and 10. We find that an increase in the value of Pr in-

creases R2c. Thus the large Prandtl number fluid systems

are more stable in the presence of thermal modulation.

Fig. 11 depicts the variation of R2c with x, for dif-

ferent values of diffusivity ratio s for both asymmetric

and lower wall temperature modulation. We find that,

the effect of increasing the value of s is to reduce the

effect of asymmetric modulation, while in case of only

wall temperature modulation its effect is destabilizing.

The variation of the shift in the Rayleigh number R2c

with frequency x for different values of the solute

Rayleigh number Rs is shown in Fig. 12. From this

figure we observe that, for small frequencies, R2c

decreases with an increase in the value of the solute

Rayleigh number, indicating that its effect is destabiliz-

ing. On the other hand for xP 20 the effect of increas-

ing solute Rayleigh number is found to be stabilizing.

However for very small values of the frequency, R2c is

negative, indicating that the effect is destabilizing one.

The results of the asymmetric and lower wall tem-

perature modulation are found to be qualitatively simi-

lar. It is observed that for large frequencies the effect of

modulation disappears.
6. Conclusions

Three types of thermal modulation effect on the onset

of double diffusive convection in an anisotropic porous

layer has been studied in this paper and the following

conclusions are drawn:

1. Low frequency symmetric modulation is destabilizing

while high frequency symmetric modulation is always

stabilizing.

2. Asymmetric modulation and only lower wall temper-

ature modulation is stabilizing for all frequencies.

However some additional parameters like porous

parameter, Prandtl number, diffusivity ratio, may

influence the stability of the system.

3. The effect of Prandtl number is found to be stabiliz-

ing and the large Prandtl number fluid systems are

more stable in the presence of thermal modulation.

4. The effect of the anisotropy parameter n in case of

symmetric modulation is significant for moderate val-

ues of the frequency. However its effect is insignifi-

cant for low frequencies. The effect of increasing n
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is to reduce the effect of thermal modulation in all

types of modulations considered.

5. The effect of increasing porous parameter is to reduce

the effect of modulation. However in case of only

lower wall temperature modulation, large F has

destabilizing effect.

6. The effect of increasing solute Rayleigh number is to

stabilize the system in general. However in case of

only lower wall temperature modulation, it destabi-

lizes the system for low frequencies.

7. The effect of increasing diffusivity ration s is to reduce

the effect of thermal modulation.

The results of this study indicate that imposed time-

periodic boundary temperatures can give rise to sub-

critical or super critical motions. The problem throws

light on an external means of controlling double diffu-

sive convection (either advancing or delaying) in an

anisotropic porous medium.
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